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NOTE

“Diagonal Shadow”—A Quasi-Newton lteration in Spectral Domain

1. INTRODUCTION

The main idea of the approach proposed below is to per-
form a rotation in the functional space 10 such an orthonor-
mal basis that the Fréchet derivative of a given operator,
whose inversion is necessary for Newton’s method, becomes
nearly diagonal. This derivative is then approximated by a
diagonal (multiplication) operator, so that its inversion
becomes trivial, The suitable basis can be chosen among the
classical arthopormat sets, so that rotation to it is casily
perfornted (c.g., by fast Fourier transform ). The technigue
may be useful for some lincar and nonlinear operator
cuations, including “black-box™ operators.

As an example of the latter, consider a free-boundary
ptoblem in fluid dynamics which can be solved by the
following iterative process [1, 2]:

{1) for a given shape of the free boundary compute the
flow ficld by solving the Navier-Stokes equations;

(2) knowing the low field, calculate the normal stress at
the free boundary:

(3) i this normal stress is not continuous across the
frec boundary. adjust the boundary shape using the local
normal stress diflerence as a “driving force™;

(4)
is zero.

go to 1 and repeat unlil the normal stress difference

Step 3 in the above algorithm is usually the “bottlencck™
the relaxation parameter t, which multiplies the normal
stress difference to give the shape increment, must normally
be very small in order to achieve convergence. Let us
describe the effect of the shape of the free boundary (f(x)in
parametric formYon the resulting distribution of the normal
shress abstract
{denoted by A). 'The result of this action {the normal stress
difference) is actually determined by the overall Now ficld,
governed by the Navier-Stokes equations and boundary
conditions at all boundaries. Step 3 can be viewed as solving
the operator equation A[ f(x)}] =0 by simple iteration

S = ALY,

difference s action ol some aperittor

(1)

Clearly, A is so complicated that it should be viewed
as a “black-box” operator for all practical purposes.
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Nevertheless, we ask: can (1) be replaced by a more efficient
procedure, so that the above operator equation could be
solved, i.e., the whole algorithm described above could con-
verge, after a smaller number of iterations? The task seems
impossible at first; we shall see, however, that significant
progress can be made, with the resulting acccleration of
convergence of the whole algorithm by a factor of 10 or
more. .

An approach that is applicable to {some) black-box
operators  will work  with  (some)  conventional
operators, und for the clarity of exposition it is convenient
o introduce the idea of the method using a second-order
differential operator, defined on a unit interval.

itlso

2. DESCRIPTION OF THE METHOD

Consider a two-point boundary-value problem (exten-
sion to higher dimensions will be obvious),

A[f(x)] = glx),

: , (2)
J(0)=£(1)=0,

where 4 1s a second-order differential operator (linear or

nonlinear). Let us consider such A that the problem (2),

discretized on a grid x;=jh, h=1/N, j=0,1,2, .., N, can

be solved by the simple iteration,

S = AL gl >0 3)

Stability requirements will usually result in the restriction

1< O(W*). and a very large number of iterations, G(N?),

will be necessary for converpence, The high-frequency

components of the ceror will decrease fast, bul  the

low-lrequency, smooth components will be decreasing very
slowly.

In principle, Eq.(2) can also be solved by Newton’s
method

== ARTALS] - 8], (4}
where the linear operator A,. is the Fréchet derivative of
A[f] evaluated at f = (. Of course, if A is linear, 4. = A,
Newton's method is equivalent to the direct inversion
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f=A""[g]. and only one “iteration” is required. Newton’s
method, if it converges, requires few iterations, but the
inversion of the operator 4, may be extremely time
consuming.

If one could find an operator B which is sufficiently close
to A, but can be inverted casily, one could use (for linear
and nenlinear A4) the following quasi-Newton iteration

fri=f"—BALf" ]~ g). (5)

The operators which are easiest to invert are the diagonal
ones, but A4,., being a second-order differential operator, is
very far from being diagonal. A rotation in the functional
space to the basis consisting of eigenfunctions of A, would
make A, diagonal, and its inversion would be trivial. In
fact, for a linear 4 and thus 4 .= A4, this sequence of opera-
tions would comprise the classical solution technique of
eigenfunction expansions. However, anly in rare cases are
the eigenfunctions of 4,. known. Although in many other
cases they can be computed, such computation would
normally require more effort than a solution of {2) by other
means.

The main idea of the present approach is to perform a
rotation in the functional space to an orthonormal basis
{u,}, which does not necessarily consist of the eigenfunc-
tions of A, but (i) is sufficiently close, so that 4 is nearly
diagonal in {#,}, and (ii) the basis functions 1, are known
and the rotation can be easily performed. Then we shall
take for B* (where * means “in the basis {u, }") a diagonal
operator whose values coincide with, or approximate (at
least crudely), the diagonal values of 4. That is, 8* is the
“diagonal shadow” of 4%. Such B* is easily invertible, and
50 (5) becomes an efficient method of iterative solution.

The basis {u,} can be chosen among the classical
orthonormal sets of f{unctions; simultaneously, the
appropriate form of the scalar product {i.e, the density
function) must be chosen. One of the simplest choices would
be the orthonormal set

. J . :

= ./2sinkn v j=012 ., N, (6)

in which case the rotation to {u,} is performed by the

discrete Fourier transform. If more than one alternative

appears, it seems reasonable to choose the basis that

would make 4~ more nearly diagonal, i.c., the one in which

the scalar products (u,, 4[u,,]), {#m, are smaller (by

absolute valuej. Or simply to perform a few iterations in

each likely candidate, and then choose the one in which
convergence is the fastest.

Obviously, the proposed approach is a heuristic one.
Some support for the notion that the eigenfunctions of
different differential operators of the same order, with the
same domain and boundary conditions, are “close” to each
other can be found in the classical studies of the behavior of
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eigenfunctions [3], but the ultimate judgment should be
based on the performance of the resulting numerical techni-
que. Note that it is most important to approximate correctly
the high-frequency eigenfunctions of A, since it is their
behavior that causes instability of the simple iteration (3)
unless 7 is very small. These high-frequency eigenfunctions
are well approximated by trigonometric functions for many
different operators [3].

The diagonal values of B*, denoted 4,, can be found as
diagonal values of A in {u;}. If A is linear and thus
A=A, we have A, = (i, A[u;]) In general,

A= (Ye)u, ALS"+ew ] — AL/ 1), (7)
where ¢ is a small number.

To save on computing of 4., one may compute a couple
of values {say, for k=1 and k=N 1), and then use the
knowledge of classical eigenvalue distributions such as the
one for 4 =d?*/dx?,

A=At = —~4N?*sin’(kn/2N), (%)
to produce an “empirical correlation” for 4, as a function of
k. Or even simply set 4, = A, k* and then adjust A, and « for
the fastest convergence,

Having constructed the operator B*, we can solve (2} by
the following quasi-Newton iteration in the basis {#, } (here
% denotes rotation to the basis {u, }):

f"“=f"—5?_1{3*_][9?{’4[f"]_g}]}’ )

or, in detail,

(1) for a given nth approximation to the solution f"(x)
compute the residual A{ /"] — g=r"(x});

{2) compute its transform p} = (u,, r");
{3) compute gy = py/7.;
{4) transform back to the original basis and subtract

from f" to obtain ! ie, /"t =" — Y glug;
(5) go to step 1 and repeat until convergence.

Obviously, the technique is exceedingly simple. If, e.g.,
{u,} is given by (6), the required transforms are Fourier
transforms and can be performed by FFT; a variety of chips
are available which can perform FFT at very high speeds.
The required programming work is minimal.

Each — A, can be viewed as the relaxation parameter t,
of the simple iteration (3) for the Ath “mode,” and then the
“diagonal-shadow” technique appears as an application of
the simple iteration (3) to each mode separately, with dif-
ferent relaxation parameters. ( There will be, of course, some
mixing and generation of the modes unless 4 is a linear
operator and {u,} is exactly its eigenfunction basis.) The
essence of the technigue is the ability to use a nearly optimal
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relaxation parameter for each mode, and thus to reducé
all components of the error equally rapidly. This simpie
meaning of 4,, plus a natural requirement for 4, to be a
smooth function of &k, and also the knowledge of this
function for classical operators, afford an opportunity to
adjust A, for optimal convergence, using numerical experi-
ment and other available information. Note that the sign
of T (and thus also of 1) will often be obvious from the
physics of the problem.

In particular, one can adjust 4, during the iterations using
the “secant algorithm.” Since i, can be viewed as an
approximation te the derivative of 4 with respect to the kth
mode, one can find an improved value for A}, beginning
with n=2, as

n—1

).zzpii—pk

n—1

s

N /T
=ik lﬁqflil=)”k E(]_

k

p’f
,,fl), (10)
P

k

and then use this value to find g} in the step 3 of (9).
Obviously, some value 4] is required to start the itera-
tions; this value can be taken from the classical distributions
such as (8), or inferred by other means (the influence of this
initial value must be minimal anyhow). It would be prudent
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errors; also, the Fréchet derivative A, should be changing
very little after /™ has approached the solution closely.

The above secant algorithm looks promising, but it
should be kept in mind that the modes are not really inde-
pendent. In extreme cases, their generation and mixing may
result in completely unsuitable values for A, being computed
from (10). The secant algorithm shouid thus be used with
caution, the values of 17 should be monitored and, perhaps,
restricted to remain within some beunds chosen a priori,
ete, It is likely to be most useful for the low-frequency
modes, since the high-frequency modes are less dependent
on the structure of 4, and it should be possible to estimate
A, for these modes by other means.

3. NUMERICAL EXAMPLES

The examples listed in TableI all correspond to
problem (2); three-point finite-difference formulae, accurate
to O{h*), were used to evaluate A[ f*1. In all these examples
N=32, u, are given by (6), and the rotation is performed by
the discrete Fourier transform. The initial guess for all the
examples was sufficientiy bad, viz.,

0 for j=90, j=N,

i esidual is ] , _
to use (10) only while the absolute value of the resid ] 1 A for 1<j<23, 25<j<N-1,
not too smali, and 1o keep 4, constant thereafter. Otherwise, N X ; 4
spurious values of 1, may be obtained due to round-off - At j= e
TABLE 1
ALSf(0)] gix) Az Number of iterations
(or method of solution if other than necessary Lo
“diagonal shadow™) approach the exact
solution within 10~*
2
ﬂ—: i} simple iteration (3) with 7 =1/2N? 1958
dx A= _4N? sin¥(kn/2N) t
-‘fé 14 »fg 0 AF 21
e’ xde x (t, AL, ) 14
af ks ;ﬁE("_I:A_E'ill=1,45 14
k I
AL+ 1K) 11
d—2f+ 5 (l @ f—z) 0 AL Did not converge
dx? Xibe x (g, AL Did not converge
248 49
24501+ 17k) 20
d? F
=+ 6f? A[x(1 -x}] Ag 10
dx 7 .
Af4x(1 — x)] Ay Did not converge
Ae=Affork=2; 10

Ay is adjusted by the secant
algorithm (10) until [A[f/"1— gl <1072
and then kept constant
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The first two examples in Table I, with 4 = d?%/dx?, are
not really examples of the diagonal shadow. The first of
these is an illustration of the slow convergence of the simple
iteration (3), even with a parameter t close to optimal,
while the second, although utilizing the algorithm (9), is
essentially a solution by an eigenfunction expansion, since
{1, } is exactly the eigenbasis of 4 in this case.

All the other examples do utilize the diagonal-shadow
approach. They show, in particular, that the theoretically
appealing choice 4, = (u,, A[#,}) is not always the best
even for linear operators, and that the much simpler (and
less expensive) “semi-empirical” formulae for 4, , sometimes
in conjunction with a judicious use of the secant algo-
rithm (10}, may vield better results. They also show that the
diagonal shadow is capable of reducing the number of itera-
tions, as compared to the simple iterative algorithm (3), by
two orders of magnitude.

The discretization of the problem on a grid and the use of
finite-differences are not, of course, essential for the present
approach. One needs some way to obtain A[f"]—g in
order to perform the iteration (9), but this way can be
different in different situations, and not even necessarily
numerical. It is conceivable that an analytical solution, in
the form of an expansion in {u,}, could be obtained along
similar lines, using a symbolic manipulation software to
perform the iteration.

4. APPLICATION TO A BLACK-BOX OPERATOR

Perhaps, the main advantage of the present approach
i3 its applicability to black-box operators. A black-box
operator A may represent some physical system or device,
possibly of unknown structure, and the task may be to find
such an input function fthat the output is equal to g. In this
case A[ /"] would be obtained by measurement.

Another kind of a black-box operator may occur in large-
scale computational problems, such as the one discussed in
the Introduction. The initial approach to this problem [2]
was to perform Step 3 as the simple iteration {1). This
procedure did lead to convergence, but only when 1 was
sufficiently small, of order 1077 and a very large number
of global iterations, of order 10°, was required.
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Then the diagonal-shadow approach was attempted. To
obtain at least some information about the operator 4, the
behavior of the normal stress difference A[ /"] was
observed, using graphical output, during the iteration (1)
with 1 which was nor sufficiently small, so the computation
was unstable. This observation revealed that, as iterations
progressed, the high-frequency modes were growing much
faster than the low-frequency ones, which suggested that
using different relaxation parameters for different modes
might speed up the convergence. Hence the diagonal
shadow was applied, with the discrete Fourier transform as
R, and 4, = 4, k%, where the optimal values of x and 4, were
to be determined by numerical experiment. Tt turned out
that choosing o = | leads to roughly uniform relaxation of
all modes and allows one to use 1, {i.c., —A,') which is
about 20 times greater than the maximum stable £ in the
simple iteration procedure. As a result, the number of global
iterations necessary for convergence (and thus also the total
CPU time, since inserting the two Fourier transforms in
Step 3 adds very little) was reduced by an order of
magnitude. The seemingly impossible problem posed in
Introduction has been solved.

No claim is made here that the proposed approach can be
applied to all possible operators. Nevertheless, the sim-
plicity of the approach, and its potential to produce
extremely powerful results when it does work, appear to
justify further experimentation and study.

REFERENCES

1. G. Ryskin and L. G. Leal, J. Comput. Phys. 50, 71 (1983).
2. G. Ryskin and L. G. Leal, /. Fluid Mech. 148, 1 {1984).

3. R. Courant and D. Hiibert, Methods of Mathematical Physics, Vol. |
(Wiley, New York, 1953).

Received March 1990; revised November 2, 1993

GREGORY RysKIN

Department of Chemical Engineering
Northwestern University
Evanston, Hllinois 60208



